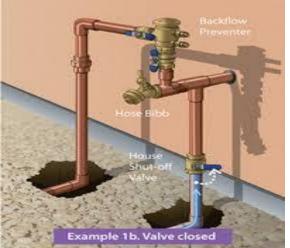
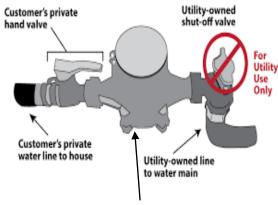
MY WATER QUALITY IN GUADALUPE


City of Guadalupe continues to produce high quality drinking water for our customers.

The City receives water from two sources – ground water wells (from underground aquifers), and State surface water (through membership with Central Coast Water Authority). Both water sources are monitored and assessed in accordance to government standards and monitoring requirements. Monitoring water quality, identifying potential contaminants and providing high quality water are our primary goals.

City of Guadalupe prepares an annual report to inform customers of the quality of water being delivered. This report contains data from January 1, 2019 to December 31, 2019, along with representative sample data prior to 2019. **Results show that the water delivered to your home met all U.S. EPA and State drinking water health standards.**


For more information about this report or for questions about any topic related to water, please contact Jaime Vidales, City of Guadalupe Water Department Supervisor, at (805) 356-3890.

Este informe contiene información importante sobre su agua de beber y como cumple con los estándares estatales y federales. Tradúzcalo o hable con alguien que lo entienda bien. Si no encuentra la manera de entender este reporte, por favor contacte a Jaime Vidales del departamento de agua de la Ciudad de Guadalupe al (805) 356-3890.

House Ball Valve Closure

The City of Guadalupe water system consists of one pumping station, three active groundwater wells, three water storage tanks, and water mains. Safe treatment and distribution of water is our daily primary goal. Maintaining pumping station, tanks, and water mains, is vital to achieving our goal. City of Guadalupe has security measures in place to ensure that our water supply is delivered to our customers safely and efficiently. Staff constantly monitors our security to ensure the best possible protection.

City of Guadalupe Water Meter Standard Installation

City of Guadalupe 2019

WATER QUALITY REPORT

This report provides information regarding the quality of drinking water for the City of Guadalupe during 2019. Included are details of where your water comes from, what it contains, and how it compares to established drinking water standards.

918 Obispo Street-Guadalupe, CA 93434 (805) 356-3890 www.ci.guadalupe.ca.us jvidales@ci.guadalupe.ca.us

CITY OF GUADALUPE ACTIVE SOURCE DETECTIONS FROM CITY WATER WELLS

$ \begin{array}{c c c c c c c c c c c c c c c c c c c $		T	ABLE 1 – SAM	PLING RESU	LTS FOR M	MICRO	BIOLO	OGICAL	CON	TAMI	NATI	<mark>ON (Distribu</mark>	tion Lines only)	
Microan Containing Interface State Containing Interface State Containing Containining Containing <thcontaining< th=""></thcontaining<>	X0		Highest No. o	f No. of Mon								,		
name Tail Calebore Rate/ For Landbore Rate/ Calebore Rat			month			MCL							Major Sources of Bacteria	
take "Lat and a main of a main a m	Total Coliform Bacteria (state Total Coliform Rule)					, 1						0	Naturally Present in the Environment	
factori mark p p mark p mark p mark p Contained Contained Set 2	Fecal Coliform and E.coli		0	0	A routine							0	Human and animal fecal waste	
Index paper Obto No. of Sample Copper MP Protectile Let No. of Sample Copper Typical Source of Contaminant Load (pp) 2007 70 <td></td> <td></td> <td></td> <td>0</td> <td></td> <td colspan="3">TT</td> <td></td> <td colspan="2"></td> <td>N/A</td> <td>Naturally present in the environment</td>				0		TT						N/A	Naturally present in the environment	
Conge Dim Contention Contention Excerting AL AL MCL (L) DipOL Source of containing and containining and containing and containing and containining		-	TAI			ULTS OF	F LEA	<mark>D AND C</mark>	COPP	ER (Di	stributio	<mark>on lines only)</mark>		
Land topin 201/17 (2017) 20 ND 0 15 0.2 Issue for the second s		*Date												
Copper (pp) 0 100 100 100 Interdements Interdements <thinterdements< th=""> <thinterdements< th=""></thinterdements<></thinterdements<>	Lead (ppb)								· · ·	,				
TABLE 3 - SAMPLING RESULTS FOR SODIUM AND HARDNESS (web. out) Chemical of reporting units "Sample Ducks" Protected Normal Letter Normal Solid (Construction of the weat and is generally entrustly entrus	Copper (ppb)	6/2017 -	20		83	0		1300	300		Internal corrosion of household plumbing systems; erosion of natural			
Checking of Constituent on reporting units) "Sample Dates," Protected Normal Patients Normal Patients Normal Patients Salt present in the water and is generally nuturally occurring constituent on reports. TABLE 4 - SAMPLING RESULTS OF CONTAMINATING WITH PRIVAME ADD Patients. The synthema is a sense the based present in the water and is generally nuturally occurring constituent on reports. Normal Patients Normal Patients Salt present in the water and is generally nuturally occurring constituent on reports. TABLE 4 - SAMPLING RESULTS OF CONTAMINATING NUTH PRIVATE PRIVATING WATER STANDADDS (Weth and sense Distribution (prob) Normal Patients Normal Patie			TAI	BLE 3 – SAMI	PLING RES	SULTS F	OR S	ODIUM A	AND I	HARD	-		r	
Sedum (ppm) 2247, 112917 119 48 - 100 None None None None Sel more provide status provem in the sparsa in	Constituent (and			Average Level		Range of Detections		MCL		PHG		Typical Source of Contaminant		
Intrames (ppin) 2.00.1 100.00 <t< td=""><td>Sodium (ppm)</td><td>ints)</td><td>2/28/17, 11/29/17</td><td>119</td><td>48 -</td><td>190</td><td></td><td>None</td><td>N</td><td>one</td><td colspan="3">Salt present in the water and is generally naturally occurring</td></t<>	Sodium (ppm)	ints)	2/28/17, 11/29/17	119	48 -	190		None	N	one	Salt present in the water and is generally naturally occurring			
TABLE 4 – SXIPLING RESULTS OF CONTAMINANTS WITH PRIMARY DRINKING WATER STANDARDS (volta and some Distribution) Chemical or outsitute and rowing Sample Date(s) Average Level Detected Res Plan Major Sources in Drinking Water Tail Tribuscethane 22109, 72319 23.3 15.10 – 33.30 80 NA Bypender of drinking water disinfection Tail Tribusceth Adv (pph) 27117, 72319 7.9 50.0 – 1.2 60 NA Bypender of drinking water disinfection Theoretic Adv (pph) 27117, 12917 0.0 0.46 – 0.3 2.0 1 Envision Advector distribution proteins: and seture (britisher advector distribution advector distribution proteins: and seture (britisher advector distribution advector distribution advector distribution advector distribution and seture (britisher advector distribution advec	Hardness (ppm)		2/28/17, 11/29/17	915	430 -	1400	None		N					
Chemical of constitution and products Sample Date(s) Peter date (sections) MCL Peter data (sections) MCL Peter data (sections) Major Sources in Drinking Water Tail Trinking Matter (sections) 221/19, 723/19 23.3 15/10 - 33.20 80 NA Byrodat of dinking water disinfection Tail Trinking Matter (section) 221/19, 723/19 7.9 5.0 - 11.2 60 NA Byrodat of dinking water disinfection Theoret (section) 221/19, 723/19 0.0 0.16 - 0.23 2.0 1 Trinking of autial disposition water disinfection Chemism, FES-2007 271/17, 1129/17 0.0 0.12 See Nee.1 000 Disbage from fordicare matter disposition Nitrat = Nitrat	TABLE 4	- SAM	PLING RESUL	IS OF CONT	AMINANT	S WITH	PRIM	IARY DR	INK	ING W				
Tail Trial Tr	Chemical or constituent (and reporting		1	Average Level	Range of	' M	-	PHG						
Histocci Acids (pp) 22/17, 723/19 7.9 5.0 - 11.2 60 NA Bynelic of division (mained posits) were additive that positions) strong texth, discharge for ferroburns, factorials, parked transition and texth, discharge for ferroburns, factorials, parked transition (mained posits), strat additive that positions) strong texth, discharge for ferroburns, factorials, parked transition, and texth discharge for ferroburns, factorials, parked transition, and texth and sensitions, and texth and sensitions, and texth and sensitions, and texth and sensitis (mained posits). Nitrit + Nitrit ex N 22/71, 11/2017 10 0.07 Existing form fault backing form fault backing form fault backing. Nitrit + Nitrit ex N 22/71, 11/2017 3.14 0.47 - 5.1 10 10 Existing form fault backing form fa	Total Trihalomet	hanes	2/21/19, 7/23/19	23.3	15.10 - 33.2	20	80	N/A		Byproduc	t of drink	ing water disinfeo	tion	
Find the (pip) 11.2917 0.19 0.10 <td></td> <td>(ppb)</td> <td></td> <td>7.9</td> <td>5.0 - 11.2</td> <td></td> <td>60</td> <td>N/A</td> <td></td> <td colspan="3">51 0</td>		(ppb)		7.9	5.0 - 11.2		60	N/A		51 0				
Caronian, Reviewal 2/2/17, 11/29/17 0.6 0 - 1.2 Sex Net 1 0.02 chenical symbols: refraory production, and texile manufications (mclinits: errors on frantaral deposits; mclinits errors errors errors errors errors on frantaral deposits; mclinits errors errors errors errors errors on frantaral deposits; mclinits errors	Fluoride (ppm)			0.19	0.16 - 0.23	3 2	2.0	1		fertilizer and alum		num factories		
Nimite an topm)226(9)5.14 $0.47 - 5.1$ 1010Romoff and lacking from fertilize use, lacking from septic tasks and sevages; erosisTotal Choirie Reidnal (pm)Daily for Yaar: 2019 1.62 (AAA) $0.76 - 2.2$ MRDL= 4.0 MRDLG = 4.0Drinking water disinfectant added for potable water treatmentTotal Choirie Reidnal (pm)Daily for Yaar: 2019 3.0 3.0 20 0.43 Erosiso of natural depositsGross Alpha (pCVL)226(19) 5.2 5.2 150 100 Erosiso of natural depositsTaBLE 5 - SAMPLING RESULTS OF CONTAMINANTS WITH SECONDARY DetectionsDischarge from particul depositsErosiso of natural depositsChemical or units*Sample Date(s)Average Level DetectedRange of DetectorsN/CLPHG (NCLG)Major Sources in Drinking WaterChoird (pm)228(17, 11/29/17)114 $17 - 210$ 500 N/ARumofflexching from natural deposits: sewater influenceOdor Threshold (TON) $27/17, 11/29/17$ 3 $1 - 4$ 3 N/ANaturally occurring organic materialsSpecific Conductor (month) $1.00 - 970$ $1100 - 1900$ 160 N/ASubstance that form inow when in water; sewater influenceNafae (pm) $(Month)/2019$ 1192 $1100 - 1900$ 100 N/ARumofflexching from natural deposits; industrial watersTotal Deshvert Solids I_{10-27} $170 - 812$ 500 N/ARumofflexching from natural deposits; industrial watersTotal Deshvert Solids <t< td=""><td colspan="2">Chromium, Hexavalent (+6) (ppb)</td><td>2/7/17, 11/29/17</td><td>0.6</td><td>0 - 1.2</td><td>See</td><td>Note 1</td><td colspan="2">0.02</td><td colspan="4">chemical synthesis, refractory production, and textile manufacturing facilities;</td></t<>	Chromium, Hexavalent (+6) (ppb)		2/7/17, 11/29/17	0.6	0 - 1.2	See	Note 1	0.02		chemical synthesis, refractory production, and textile manufacturing facilities;				
(pm) 8.6(19, 115/1) 5.14 0.47 – 5.1 10 10 10 resion form natural deposits (pm) Daily for Year: 2019 1.62 (RAA) 0.76 – 2.2 4BDL MRDLG = 4.0 Drinking water disinfectant added for potable water treatment (pmin) Charmin (pCL) 2.26/19 3.0 3.0 20 0.43 Erosion of statural deposits Gross Alpha (pCL) 2.26/19 5.2 5.2 15 00) Erosion of statural deposits TABLE 5 – SAMPLING RESULTS OF CONTAMINANTS WITH SECONDARY DRINKING WATER STANDARDS (Wells only) Statural deposits Major Sources in Drinking Water Chemical or outsituet (one) *Sample Date(s) Average Level Detected Range of Detected N/A RunofFleaching from natural deposits; seawater influence Odor Threshold (TON) 2.28/17, 11/29/17 3 1 - 4 3 N/A Naturally-courring organic materials Specific Conductance Jan-De- (Monthy)2019 316 0 - 970 300 N/A RunofFleaching from natural deposits; industrial wates Sulfate (ppm) Jan-De- (Monthy)2019 316 0.77 770 - 520	Nickel (ppb)			10	0 - 19	1	100	12				1 0		
Total Choirne Residual (ppm) Daily for Year: 2019 1.62 (RAA) 0.76 - 2.2 MRDL = 4.0 MRDL = 4.0 Drinking water disinfectant added for potable water treatment Urnahun (pC/L) 2.26/19 3.0 3.0 20 0.43 Erosion of natural deposits Gross Alphn (pC/L) 2.26/19 5.2 5.7 150 Discharge from participant added for potable water treatment TABLE 5 - SAMPLINC RESULTS OF CONTAMINANTS WITH SECONDAXT DRINKING WATER STANDARDS (Wells only) Chemical on Discharge from participant added for potable water treatment Magior Sources in Drinking Water Chemical or units *Sample Date(s) Verage Level Detected Range of Detected MCL PHG (MCLG) Major Sources in Drinking Water Chorde (ppm) 228/17, 11/29/17 114 17 - 210 500 N/A Ranof/Faching from natural deposits: seawater influence Glor Threshold (TON) 27/17, 11/29/17 3 1.4 3 N/A Naturally-ocurring organic materials Specific Condition Ina-Dec (Monthy)2019 1192 1100 - 1900 1600 N/A Renof/Flaching from natural deposits: industrial wates Total Desoverd Solds Ina-De	Nitrate + Nitrite as N (nnm)			3.14	0.47 - 5.1		10	10						
Ornnium (pCi/L) 2.2619 3.0 3.0 20 0.43 Erosion of natural deposits Gross Alpha (pCL) 2.2619 5.2 5.2 15 0.0 Erosion of natural deposits Tobere (pp) 11/2917 5.7 5.7 150 Dischargs from perclowan and chemical factories; underground gas tank kals TABLE 5 SAMPLING RESULTS OF CONTAMINANTS WITH SECONDARY DRINKING WATER STANDARDS (Wells only) Chemical or constituent (our percepting watch and the provide) *Sample Date(s) Arerage Level Detected Detections MCL PHG (MCLG) Major Sources in Drinking Water Chemical or constituent (our percepting watch and the provide) 2/28/17, 11/29/17 3 1 - 4 3 N/A Runoft/Bacching from natural deposits; seawater influence Manhor 2/28/17, 11/29/17 3 1 - 4 3 N/A Substances that form ions when in water, seawater influence Manhor 2/28/17, 11/29/17 3 1 - 4 3 N/A Runoft/Bacching from natural deposits; industrial wates Subface (ppn) 2/27/17, 11/29/17 3 0.00 N/A Runoft/Bacching from natural deposits; industrial wates	Total Chlorine Residual				0.76 - 2.2			MRDLG =	4.0	<u>گ</u>				
Tothene (ppb) 11/29/17 5.7 150 150 Discharge from petroleum and chemical factories: underground gas task leaks TABLE 5 SAMPLING RESULTS OF CONTAMINANTS WITH SECONDARY DRINKING WATER STANDARDS (Weits only) Chemical or constituent (and reporting uito) *Sample Date(s) Average Level Detections Range of Detections WCL PHG (MCLG) Major Sources in Drinking Water 0dor Threshold (TON) 27/17, 11/29/17 3 1-4 3 N/A Numflexening from natural deposits; seawater influence Gunhocim Jan-Dec (Monthy 2019) 1192 1100 - 1900 1600 N/A Substances that form ions when in water; seawater influence Sallate (ppm) Jan-Dec (Monthy 2019) 376 360 - 390 500 N/A Rumoffleaching from natural deposits; industrial wastes Toble (tripph) Jan-Dec (Monthy 2019) 118 0 - 970 300 N/A Rumoffleaching from natural deposits; industrial wastes Toble (tripph) Jan-Dec (Monthy 2019) 717 710 - 820 1000 N/A Rumoffleaching from natural deposits; industrial wastes Toble (tripph) Jan-Dec (Monthy 2019) 717 710 - 8	(ppm) Uranium (pCi/L)		2/26/19		3.0			0.43		Erosion of natural deposits				
TABLE 5 - SAMPLING RESULTS OF CONTAMINANTS WITH SECONDARY DRINKING WATER STANDARDS (wells only) Chemical or constituent (and reporting mino) 'Sample Date(s) Average Level Detected Range of Detections MCL PHG (MCLG) Major Sources in Drinking Water Chorde (ppm) 228/17, 11/29/17 114 17 - 210 500 N/A Runoff/leaching from natural deposits; seawater influence Odor Threshold (TON) 27/17, 11/29/17 3 1-4 3 N/A Naturally-occurring organic materials Specific Conductance (mbho/cm) Jan-Dec Jan-Dec 1000 - 1900 1600 N/A Runoff/leaching from natural deposits; industrial wastes Iron (pb) Jan-Dec Jan-Dec 300 - 390 500 N/A Runoff/leaching from natural deposits; industrial wastes Iron (pb) Jan-Dec Jan-Dec 100 - 070 - 300 N/A Runoff/leaching from natural deposits; industrial wastes Irotal Disavted Solids Jan-Dec Monthly/2019 797 - 770 - 820 1000 N/A Runoff/leaching from natural deposits; industrial wastes Irotal (pm) 11/29/17 80 80 15 N/A	Gross Alpha (pCi/L)									*				
Chemical or constituent (and reporting units) *Sample Date(s) Average Level Detected Range of Detections MCL PHG (MCLG) Major Sources in Drinking Water Chloride (ppm) 228/17,11/29/17 114 17-210 500 N/A Runoff/leaching from natural deposits; seawater influence Odor Threshold (ppm) 228/17,11/29/17 3 1-4 3 N/A Naturally-occurring organic materials Specific Conductance Jun-Dec: (Monthly/2019 1192 1100 - 1900 1600 N/A Subscaces that form ions when in water, seawater influence Silfate (ppm) AmDec (Monthly/2019 376 360 - 390 500 N/A Runoff/leaching from natural deposits; industrial wastes True (pph) (Monthly/2019 797 770 - 820 1000 N/A Runoff/leaching from natural deposits; industrial wastes Trubdity (NTU) 27/17, 11/29/17 80 80 15 N/A Soil runoff Color (units) 11/29/17 80 80 15 N/A Runoff/leaching from natural deposits; industrial wastes Constituent (an erporeting units) PAELE 6 - SAMPLING RESULT		IES (ADV					
constituent (and reporting mit(s))*Sample Date(s) Detected DetectionsMCL State MCL MC			SAMIF LING KE				<u>1111 (</u>			DKIN	AING	WAIERS	TANDARDS (wells only)	
Odor Threshold (TON) 27/17, 11/29/17 3 1 - 4 3 N/A Naturally-occurring organic materials Specific Conductance (µmbo/cm) Jan-Dec (Monthly/2019) 1192 1100 - 1900 1600 N/A Substances that form ions when in water; seawater influence Sulfate (ppm) Im-Dec (Monthly/2019) 376 360 - 390 500 N/A Runoff/leaching from natural deposits; industrial wastes Ton (ppb) Jan-Dec (Monthly/2019) 118 0 - 970 300 N/A Leaching from natural deposits; industrial wastes Total Dissolved Solids (TDS) (ppm) Jan-Dec (Monthly/2019 797 770 - 820 1000 N/A Runoff/leaching from natural deposits; industrial wastes Turbidity (NTU) 27/17, 11/29/17 21 0.70 - 41.3 5 N/A Naturally occurring organic materials Color (units) 11/29/17 80 80 15 N/A Runoff/leaching from natural deposits; industrial wastes Chemical or constituent (wast reporting waits Sampe Level Detected Range of Detections NL PHE (MCLG) Major Sources in Drinking Water Atkalinity (ppm) 2	constituent (and reporting		*Sample Date(s)				ICL							
Specific Conductance (unho/cm) Jan-Dec (Monthly)2019 1192 1100 - 1900 1600 N/A Substances that form ions when in water; seawater influence Sulfate (ppm) Jan-Dec (Monthly)2019 376 360 - 390 500 N/A Runoff/leaching from natural deposits; industrial wastes Iron (ppb) Jan-Dec (Monthly)2019 118 0 - 970 300 N/A Leaching from natural deposits; industrial wastes Total Dissolved Solids (TDS) (ppn) Jan-Dec (Monthly)2019 797 770 - 820 1000 N/A Runoff/leaching from natural deposits; industrial wastes Torbidity (NTU) 27/17, 1/129/17 21 0.70 - 41.3 5 N/A Soli runoff Color (units) 11/29/17 80 80 15 N/A Runoff/leaching from natural deposits; industrial wastes TABLE 6 - SAMPLING RESULTS OF UNREGULATED CONTAMINANTS (Wells only) Constituent (and reporting units *Sample Date(s) Average Level Detected N/A N/A Runoff/leaching from natural deposits; seawater influence Carbin (try (ppm) 2/28/17, 11/29/17 235 230 - 240 N/A N/A Runoff/leaching from natural deposists;	Chloride (ppm)		2/28/17, 11/29/17	114	17 - 210	5	500	N/A						
(µmho/cm)(Monthly201911921100-19001000N/ASubstances that form ions when in water; seawater influenceSulfate (ppm)Jan-Dec (Monthly2019376360-390500N/ARunoff/leaching from natural deposits; industrial wastesIron (ppb)Jan-Dec (Monthly20191180 - 970300N/ALeaching from natural deposits; industrial wastesTotal Dissolved Solids (DS) (ppm)Jan-Dec (Monthly2019797770 - 8201000N/ARunoff/leaching from natural deposits; industrial wastesTotal Dissolved Solids (DS) (ppm)J11/29/17210.70 - 41.35N/ASoil runoffColor (units)11/29/17808015N/ANaturally occurring organic materialsZinc (ppm)11/29/171501505N/ARunoff/leaching from natural deposits; industrial wastesChemical or constituent (and reporting units*Sample Date(s)Average Level DetectedRange of DetectedNLPHG (MCLG)Major Sources in Drinking WaterAtkalinity (ppm)228/17, 11/29/17235230 - 240N/AN/ARunoff/leaching from natural deposits; seawater influenceCorrosivity (SI)Non-CorrosiveNon-CorrosiveN/AN/AN/ARunoff/leaching from natural deposits; seawater influenceMagessium (ppm)228/17, 11/29/17235230 - 240N/AN/ARunoff/leaching from natural deposits; seawater influenceCorrosivity (SI)Non-CorrosiveNon-CorrosiveN/AN/	Odor Threshold (TON)		,	3	1 - 4		3	N/A						
Sultate (ppm)(Monthly)2019376300 - 590500N/AKunoff/leaching from natural deposits; industrial wastesIron (ppb)Inn-Dec (Monthly)20191180 - 970300N/ALeaching from natural deposits; industrial wastesTotal Dissolved SolidsJan-Dec (Monthly)2019797770 - 8201000N/ARunoff/leaching from natural deposits; industrial wastesTurbidity (NTU)2/7/17, 11/29/17210.70 - 41.35N/ASoil runoffColor (units)11/29/17808015N/ANaturally occurring organic materialsZinc (ppm)11/29/171501505N/ARunoff/leaching from natural deposits; industrial wastesChemical or constituent (and reporting units)2/28/17, 11/29/17235230 - 240N/AN/ARunoff/leaching from natural deposits; seawater influenceAlkalinity (ppm)2/28/17, 11/29/17235230 - 240N/AN/ARunoff/leaching from natural deposits; seawater influenceChemical or constituent (and reporting units)2/28/17, 11/29/17235230 - 240N/AN/ARunoff/leaching from natural deposits; seawater influenceAlkalinity (ppm)2/28/17, 11/29/1721793 - 340N/AN/AN/ARunoff/leaching from natural deposits; seawater influenceCorrosivity (SI)Non-CorrosiveNon-CorrosiveN/AN/AN/ANatural or industrial/-influence balance of hydrogen, carbon and oxygen in the water: affected by temperature and other factors.Bagnes	Specific Conductance (µmho/cm)		(Monthly)2019	1192	1100 - 1900) 1	600	N/A						
Iron (pp) (Monthly)2019 118 0 - 9/0 300 N/A Learning from natural deposits; industrial wastes Total Dissolved Solids (TDS) (ppm) Jan-Dec (Monthly)2019 797 770 - 820 1000 N/A Runoff/leaching from natural deposits; industrial wastes Turbidity (NTU) 27/17, 11/29/17 21 0.70 - 41.3 5 N/A Soil runoff Color (units) 11/29/17 80 80 15 N/A Naturally occurring organic materials Zinc (ppm) 11/29/17 150 150 5 N/A Runoff/leaching from natural deposits; industrial wastes Chemical or constituent (and reporting units • SAMPLING RESULTS OF UNREGULATED CONTAMINANTS (Wells only) Chemical or constituent (and reporting units • Sample Date(s) Average Level Detected Range of Detected PHG (MCLG) Major Sources in Drinking Water Silicarbonat (ppm) 2/28/17, 11/29/17 235 230 - 240 N/A N/A N/A N/A N/A Corrosivity (SI) Non-Corrosive Non-Corrosive N/A N/A N/A N/A	Sulfate (ppm)		(Monthly)2019					N/A						
(TDS) (ppm)(Monthly)2019//1//12.01000N/ARunoff/leaching from natural depositsTurbidity (NTU)2/7/17, 11/29/17210.70 - 41.35N/ASoil runoffColor (units)11/29/17808015N/ANaturally occurring organic materialsZinc (ppm)11/29/171501505N/ARunoff/leaching from natural deposits; industrial wastesTABLE 6 - SAMPLING RESULTS OF UNREGULATED CONTAMINANTS (Wells only)Chemical or constituent (and reporting units Average Level DetectedRange of DetectionsNLPHG (MCLG)Major Sources in Drinking WaterAklainity (ppm)2/28/17, 11/29/17235230 - 240N/AN/ARunoff/leaching from natural deposits; seawater influenceCalcium (ppm)2/28/17, 11/29/17235230 - 240N/AN/ARunoff/leaching from natural deposits; seawater influenceCalcium (ppm)2/28/17, 11/29/1721793 - 340N/AN/AN/ARunoff/leaching from natural deposits; seawater influenceCorrosivity (SI)Non-CorrosiveNon-CorrosiveN/AN/AN/AN/ARunoff/leaching from natural deposits; seawater influencePotassium (ppm)2/28/17, 11/29/179447 - 140N/AN/ARunoff/leaching from natural deposits; seawater influencePotassium (pph)2/28/17, 11/29/174.12.8 - 5.3N/AN/ARunoff/leaching from natural deposits; seawater influenceBoron (ppb)2/28/17, 11/29/17 <t< td=""><td>Iron (ppb)</td><td>olida</td><td>(Monthly)2019</td><td>118</td><td>0 - 970</td><td>3</td><td>300</td><td>N/A</td><td></td><td colspan="3">• • •</td></t<>	Iron (ppb)	olida	(Monthly)2019	118	0 - 970	3	300	N/A		• • •				
Color (units)11/29/17808015N/ANaturally occurring organic materialsZinc (ppm)11/29/171501505N/ARunoff/leaching from natural deposits; industrial wastesTABLE 6 – SAMPLING RESULTS OF UNREGULATED CONTAMINANTS (Wells only)Chemical or constituent (and reporting units*Sample Date(s)Average Level DetectedRange of DetectionsNLPHG (MCLG)Major Sources in Drinking WaterAlkalinity (ppm)2/28/17, 11/29/17235230 - 240N/AN/AN/ARunoff/leaching from natural deposits; seawater influenceBicarbonate (ppm)2/28/17, 11/29/17235230 - 240N/AN/AN/ARunoff/leaching from natural deposits; seawater influenceCalcium (ppm)2/28/17, 11/29/1721793 - 340N/AN/AN/ARunoff/leaching from natural deposits; seawater influenceCorrosivity (SI)Non-CorrosiveNon-CorrosiveNon-CorrosiveN/AN/AN/AN/AMagnesium (ppm)2/28/17, 11/29/177.57.4 - 7.6N/AN/ARunoff/leaching from natural deposits; seawater influencePotassium (ppm)2/28/17, 11/29/177.57.4 - 7.6N/AN/ARunoff/leaching from natural deposits; seawater influencePotassium (ppb)2/28/17, 11/29/174.74.750N/AN/ARunoff/leaching from natural deposits; seawater influenceVanadium (ppb)2/21/174.750N/AN/AN/ARunoff/leaching from natural deposits; sea	(TDS) (ppm)	onus	(Monthly)2019							• A		ts		
Zinc (ppm) 11/29/17 150 150 5 N/A Runoff/leaching from natural deposits; industrial wastes TABLE 6 – SAMPLING RESULTS OF UNREGULATED CONTAMINANTS (Wells only) Chemical or constituent (and reporting units *Sample Date(s) Average Level Detected Range of Detections NL PHG (MCLG) Major Sources in Drinking Water Alkalinity (ppm) 2/28/17, 11/29/17 235 230 - 240 N/A N/A Runoff/leaching from natural deposits; seawater influence Bicarbonate (ppm) 2/28/17, 11/29/17 285 280 - 290 N/A N/A N/A (No source identified) Corrosivity (SI) Non-Corrosive Non-Corrosive Non-Corrosive N/A N/A N/A N/A N/A Magnesium (ppm) 2/28/17, 11/29/17 94 47 - 140 N/A N/A Runoff/leaching from natural deposits; seawater influence PH (units) 2/28/17, 11/29/17 94 47 - 140 N/A N/A Runoff/leaching from natural deposits; seawater influence PH (units) 2/28/17, 11/29/17 4.1 2.8 - 5.3 N/A N/A <t< td=""><td colspan="2">•</td><td></td><td></td><td></td><td></td><td colspan="2"></td><td colspan="2"></td><td colspan="3"></td></t<>	•													
TABLE 6 – SAMPLING RESULTS OF UNREGULATED CONTAMINANTS (Wells only) Chemical or constituent (and reporting units & Average Level Detected Range of Detections NL PHG (MCLG) Major Sources in Drinking Water Alkalinity (ppm) 2/28/17, 11/29/17 235 230 - 240 N/A N/A Runoff/leaching from natural deposits; seawater influence Bicarbonate (ppm) 2/28/17, 11/29/17 217 93 - 340 N/A N/A Runoff/leaching from natural deposits; seawater influence Corrosivity (SI) Non-Corrosive Non-Corrosive Non-Corrosive Non-Corrosive N/A N/A N/A Magnesium (ppm) 2/28/17, 11/29/17 94 47 - 140 N/A N/A Runoff/leaching from natural deposits; seawater influence PH (units) 2/28/17, 11/29/17 7.5 7.4 - 7.6 N/A N/A Runoff/leaching from natural deposits; seawater influence Potassium (ppm) 2/28/17, 11/29/17 4.1 2.8 - 5.3 N/A N/A Runoff/leaching from natural deposits; seawater influence Boron (ppb) 2/28/17, 11/29/17 4.7 50 N/A N/A Runoff/leaching from natural deposits; seawater influence Magnesium (ppm)	× /													
Chemical or constituent (and reporting units*Sample Date(s)Average Level DetectedRange of DetectionsNLPHG (MCLG)Major Sources in Drinking WaterAkalinity (ppm)2/28/17, 11/29/17235230 - 240N/AN/ARunoff/leaching from natural deposits; seawater influenceBicarbonate (ppm)2/28/17, 11/29/17285280 - 290N/AN/AN/A(No source identified)Carcing (ppm)2/28/17, 11/29/1721793 - 340N/AN/ARunoff/leaching from natural deposits; seawater influenceCorrosivity (SI)Non-CorrosiveNon-CorrosiveNon-CorrosiveN/AN/AN/ARunoff/leaching from natural deposits; seawater influenceMagnesium (ppm)2/28/17, 11/29/179447 - 140N/AN/ARunoff/leaching from natural deposits; seawater influencePH (units)2/28/17, 11/29/177.57.4 - 7.6N/AN/ARunoff/leaching from natural deposits; seawater influencePotassium (ppm)2/28/17, 11/29/174.12.8 - 5.3N/AN/ARunoff/leaching from natural deposits; seawater influenceBoron (ppb)2/28/17, 11/29/174.12.8 - 5.3N/AN/ARunoff/leaching from natural deposits; seawater influenceVanadium (ppb)2/7/174.74.750N/AN/AWanadium include continental dust, marine aerosol, and vokanic emissions.	zane (ppm)					TS OF U			D CO		-	,		
Alkalinity (ppm) 2/28/17, 11/29/17 235 230 - 240 N/A N/A Runoff/leaching from natural deposits; seawater influence Bicarbonate (ppm) 2/28/17, 11/29/17 285 280 - 290 N/A N/A N/A (No source identified) Calcium (ppm) 2/28/17, 11/29/17 217 93 - 340 N/A N/A N/A Runoff/leaching from natural deposits; seawater influence Corrosivity (SI) Non-Corrosive Non-Corrosive Non-Corrosive N/A N/A N/A Runoff/leaching from natural deposits; seawater influence Magnesium (ppm) 2/28/17, 11/29/17 94 47 - 140 N/A N/A N/A Runoff/leaching from natural deposits; seawater influence PH (units) 2/28/17, 11/29/17 94 47 - 140 N/A N/A N/A Runoff/leaching from natural deposits; seawater influence Potassium (ppm) 2/28/17, 11/29/17 94 47 - 16 N/A N/A N/A Runoff/leaching from natural deposits; seawater influence Boron (ppb) 2/28/17, 11/29/17 4.1 2.8 - 5.3 N/A N/A Runoff/leaching from natural deposits; seawater influence Boron (ppb) 2/28/17, 1	constituent (and reporting		*Sample Data(c) Average Level F		Range of	Range of NI		PHG						
Calcium (ppm) 2/28/17, 11/29/17 217 93 - 340 N/A N/A Runoff/leaching from natural deposits; seawater influence Corrosivity (SI) Non-Corrosive Non-Corrosive Non-Corrosive N/A N/A N/A Natural or industrially-influenced balance of hydrogen, carbon and oxygen in the water; affected by temperature and other factors. Magnesium (ppm) 2/28/17, 11/29/17 94 47 - 140 N/A N/A Runoff/leaching from natural deposits; seawater influence pH (units) 2/28/17, 11/29/17 7.5 7.4 - 7.6 N/A N/A Runoff/leaching from natural deposits; seawater influence Potassium (ppm) 2/28/17, 11/29/17 4.1 2.8 - 5.3 N/A N/A Runoff/leaching from natural deposits; seawater influence Babies of some pregnant wome who drink water, containing boron in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals. Vanadium (ppb) 2/2/17 4.7 50 N/A VA Vanadium include continental dust, marine aerosol, and vokanic emissions.	Alkalinity (ppm)												ts; seawater influence	
Non-Corrosive Non-Corrosive Non-Corrosive Non-Corrosive N/A N/A Natural or industrially-influenced balance of hydrogen, carbon and oxygen in the water; affected by temperature and other factors. Magnesium (ppm) 2/28/17, 11/29/17 94 47 - 140 N/A N/A Runoff/leaching from natural deposits; seawater influence pH (units) 2/28/17, 11/29/17 7.5 7.4 - 7.6 N/A N/A Runoff/leaching from natural deposits; seawater influence Potassium (ppm) 2/28/17, 11/29/17 4.1 2.8 - 5.3 N/A N/A Runoff/leaching from natural deposits; seawater influence Boron (ppb) 2/28/17, 11/29/17 220 130 - 310 1000 N/A Runoff/leaching from natural deposits; seawater influence Wanadium (ppb) 2/7/17 4.7 50 N/A N/A Runoff/leaching from natural deposits; seawater influence		1)												
Magnesium (ppm) 2/28/17, 11/29/17 94 47 - 140 N/A N/A Runoff/leaching from natural deposits; seawater influence pH (units) 2/28/17, 11/29/17 7.5 7.4 - 7.6 N/A N/A Runoff/leaching from natural deposits; seawater influence Potassium (ppm) 2/28/17, 11/29/17 4.1 2.8 - 5.3 N/A N/A Runoff/leaching from natural deposits; seawater influence Boron (ppb) 2/28/17, 11/29/17 4.1 2.8 - 5.3 N/A N/A Runoff/leaching from natural deposits; seawater influence Boron (ppb) 2/28/17, 11/29/17 220 130 - 310 1000 N/A Runoff/leaching from natural deposits; seawater influence Vanadium (ppb) 2/7/17 4.7 50 N/A N/A Runoff/leaching from natural deposits; seawater influence	Corrosivity (SI)		Non-Corrosive							Natural or industrially-influenced balance of hydrogen, carbon and oxygen in the water; affected by temperature and other factors.				
Potassium (ppm) 2/28/17, 11/29/17 4.1 2.8 – 5.3 N/A N/A Runoff/leaching from natural deposits; seawater influence Boron (ppb) 2/28/17, 11/29/17 220 130 - 310 1000 N/A Babies of some pregnant women who drink water, containing boron in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals. Vanadium (ppb) 2/7/17 4.7 4.7 50 N/A Vanadium include continental dust, marine aerosol, and volcanic emissions.)								Runoff/le	aching fro	m natural deposi	ts; seawater influence	
Boron (ppb) 2/28/17, 11/29/17 220 130 - 310 1000 N/A Babies of some pregnant women who drink water, containing boron in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals. Vanadium (ppb) 2/7/17 4.7 50 N/A Babies of some pregnant women who drink water, containing boron in excess of the notification level may have an increased risk of developmental effects, based on studies in laboratory animals.	pH (units) Potassium (ppm)													
Vanadium (ppb) 2/7/17 4.7 4.7 50 N/A Vanadium occurs naturally in soil, water, and air. Natural sources of atmospheric vanadium include continental dust, marine aerosol, and volcanic emissions.	Boron (ppb)			220				N/A		notification level may have an increased risk of developmental effects, based on studies in laboratory animals.				
	Vanadium (ppb)		2/7/17	4.7	4.7		50	N/A		Vanadiur	n occurs n	aturally in soil, w		
		TABLE	7 – *SAMPLING	G RESULTS S	HOWING F	ECAL IN	IDICA	TOR-POS	SITIV					

* The State allows us to monitor for some contaminants less than once per year because the concentrations of these contaminants do not change frequently. Some of our data, though representative, is more than one year old. If a contaminant is not in this report, the contaminant is either ND or below the DLR for 2018. Note: All results represent raw water from our active water wells, except microbiological, Lead and Copper, Trihalomethanes and Haloacetic Acids, and Chlorine Residuals, which were taken at various distribution points in our water system.

Water system. Note 1: There is currently no MCL for hexavalent chromium. The previous MCL of 0.010 mg/L was withdrawn on September 11, 2017.

PURCHASED SURFACE WATER CENTRAL COAST WATER AUTHORITY Water Quality from January-December 2019

Water Quality from January-December 2019										
	,	State	PHG	State	Dongo	TREATED	SOURCE STATE			
Parameter	Units	State MCL	PHG (MCLG)	State DLR	Range Average	CCWA	STATE WATER	Major Sources in Drinking Water		
PRIMARY STANDARDS-	Mandator	<mark>y Health-Re</mark> l	lated Standa	<mark>ırds</mark>						
Clarity (a) Combined Filter Effluent	NTU	TT-<1	NTU every 4 h	ours	Range	0.03 - 0.1	NA	1		
Turbidity (a)	NIC		of samples <0.		%	100%	NA	Soil runoff		
INORGANIC CHEMICALS										
Aluminum	mg/L	1 (b)	0.6	0.05	Range	ND - 0.094	ND - 0.31	Erosion of natural deposits, residual from some surface water treatment proces		
		- (0)			Average	0.056	0.127			
RADIONUCLIDES				r	_			1		
Gross Alpha Particle	pCi/L	15	(0)	3	Range	ND	5.3	Erosion of natural deposits.		
DIGEDIDIUTION CUCCEDIA	(ON)	NN/G			Average	ND	5.3			
DISTRIBUTION SYSTEM N	<u>AONITOI</u>	<u> </u>	MDDLC		Range	0.33 - 3.5	NA			
Total Chlorine Residual	mg/L	MRDL = 4.0	MRDLG = 4.0	NA	Average	2.47	NA	Drinking water disinfectant added for treatment		
		5.0% of monthly samples	(0)		Range	0	NA			
Total Coliform Bacteria (c)					Average	0	NA	Naturally present in the environment		
					Highest	0%	NA			
Total Trihalomethanes (d)	ug/L	80	NA	(0.5)	Range Average	24 - 75 45	NA NA	By-product of drinking water chlorination		
Total Trinarometilanes (u)	ug/L				Highest LRAA	43	NA	25 product of drinking water enformation		
			NA	(1) (e)	Range	7.4 – 25	NA			
Haloacetic Acids (d)	ug/L	60			Average Highest LRAA	15 15.5	NA NA	By-product of drinking water chlorination		
SECONDARY STANDARDS-A	esthetic Star	ndards		l	Highest LKAA	15.5	INA			
Chloride	mg/L	500 (j)	NA	(1)	Range	13 - 146	11 - 142	Runoff/leaching from natural deposits; seawater influence		
	-				Average Range	59 ND	56 20			
Color	ACU	15 (j)	NA	(3)	Average	ND	20	Naturally-occurring organic materials		
Corrosivity (Aggressive Index)	SU	Non- Corrosive	NA	(0.1)	Range	12	12	No data		
(i)			274	(2)	Average Range	ND	8.8			
Manganese, Total	ug/L	50 (j)	NA	(2)	Average	ND	8.8	No data		
Odor Threshold	TON	3 (j)	NA	(1)	Range Average	ND ND	2	Naturally-occurring organic materials		
Specific Conductance	uS/cm	1600 (j)	NA	NA	Range	138 - 762	131 - 691	Substances that form ions when in water; seawater influence		
-	us, em	-			Average Range	403 46	353 34			
Sulfate	mg/L	500 (j)	NA	(0.5)	Average	40	34	Runoff/leaching from natural deposits; industrial wastes		
Total Dissolved Solids (TDS)	mg/L	1000 (j)	NA	(10)	Range	260 260	250 250	Runoff/leaching from natural deposits		
	N VITTA I	5.0	274	(0.1)	Average Range	ND - 0.12	0.38 - 55			
Turbidity (Monthly) (a)	NTU	5 (j)	NA	(0.1)	Average	0.05	3.39	Soil runoff		
ADDITIONAL PARAMETERS (Unregulated	Î.		r –	Range	ND - 1	2 - 8			
2-Methylisoborneol	ng/L	NA	NA	(1)	Average	0.2	3.8	No Data		
Alkalinity (Total) as CaCO3	mg/L	NA	NA	(2)	Range	30 - 80	28 - 86	Runoff/leaching from natural deposits; seawater influence		
equivalents				<u> </u>	Average Range	56 19	59 18			
Calcium	mg/L	NA	NA	(1)	Average	19	18	Runoff/leaching from natural deposits; seawater influence		
Geosmin	nc/I	NA	NA	(1)	Range	ND - 6	2 - 8	An organic compound mainly produced by bacterial growth in surface water		
GCOMINI	ng/L	INA	INA	(1)	Average	2.8	3.8	An organic compound manny produced by Dacterial growth in surface Water		
Hardness (Total) as CaCO3	mc/I	NA	NA	(2)	Range	26 - 144	28 - 144	Leaching from natural deposits		
	mg/L	NA TT	NA NA	(3) NA	Average Range	82 0 - 2	82 NA	-		
Heterotrophic Plate Count (f)	CFU/				Average	0-2	NA	Naturally present in the environment		
	mL				Range	12	11			
Magnesium	mg/L	NA	NA	(0.1)	Average	12	11	Runoff/leaching from natural deposits; seawater influence		
pH	SU	NA	NA	(0.1)	Range	7.7 – 8.7	7.5 - 9.3	Runoff/leaching from natural deposits; seawater influence		
-					Average Range	8.4 3.1	8.4 3.1			
Potassium	mg/L	NA	NA	(1)	Average	3.1	3.1	Runoff/leaching from natural deposits; seawater influence		
Sodium	mg/L	NA	NA	(1)	Range Average	58 58	50 50	Runoff/leaching from natural deposits; seawater influence		
Total Organic Carbon (TOC)	mc/I	тт	N ^T A	(0.2)	Range	1.5 - 3	2.6 - 5.4	Various netural and man made courses		
(g) ootnotes: Abbreviations and Notes	mg/L	TT	NA	(0.3)	Average	1.9	3.2	Various natural and man-made sources		
omores' Appreviations and Notes								and the		

(g) IIIg/L
 Foornotes: Abbreviations and Notes
 FOOTNOTES:

 (a) Turbidity (NTU) is a measure of the cloudiness of the water and it is a good indicator of the effectiveness of our filtration system. Monthly turbidity values are listed in the Secondary Standards section.
 (b) Aluminum has a Secondary MCL of 0.2 ppm.
 (c) Total colform MCLs: Systems that collect >40 sample/month no more than 5.0% of the monthly samples much any be Total Colform positive. Fecal collform/E.coll. constitutes an acute MCL violation.
 (d) Compliance based on the running quarterly annual average of distribution system samples.
 (e) Monchoroacetic Acid (MCAA) has a DLR of 2.0 ug/L. while the other four Haloacetic Acids have DLRs of 1.0 ug/L.
 (f) Poor plate technique
 (g) TOCs are taken at the treatment plant's combined filter effluent.

(h) State MCL is 45 mg/L as NO3, which equals 10

(ii) State inducts 43 MgL as NOo, which equals mgL as N. (i) Al \geq 12.0 = Non-aggressive water Al (10.0-11.9) = moderately aggressive water Al \leq 10.0 = highly aggressive water Reference: ANSI/AWWA Standard C400-93 (200)

(R98) ABBREVIATIONS:

ABBREVIATIONS: (i) Secondary MCL AL = Regulatory Action Level ACU = Apparent Color Units CCWA= Central Coast Water Authority CFU/ml = Colony Forming Units per milliliter DLR = Detection Level for purposes of Reporting MCL = Maximum Contaminant Level MCLG = Maximum Contaminant Level Goal MRDL = Maximum MRDLG = Maximum Residual Disinfectant Goal NA = Not Aoolicable NRDCG = Maximum Residual Disiner NA = Not Applicable ND = None Detected NTU = Nephelometric Turbidity Units pC/L = PicoCuries per liter PHG = Public Health Goal

ppb = parts per billion, or micrograms per liter (µg/L)

ppm = parts per million, or milligrams per liter (mg/L) RAA = Running Annual Average LRAA = Locational Running Annual Average SI = Saturation Index TON=Threshold Odor Number TOC = Total Organic Carbon TT = Treatment Technique µmho/cm = micromhos per centimeter (unit of specific conductance of water).

WHERE DOES YOUR WATER COME FROM?

The sources of safe drinking water (both tap water and bottled water) include rivers, streams, reservoirs, springs, and wells. As water travels over the surface of the earth or through the ground, it dissolves naturally occurring minerals and in some cases hazardous materials. It can also pick up substances resulting from the presence of animals or from human activity.

In 2019, City of Guadalupe drew 54% of its water from active city wells, and 46% from surface water from the State Water Project. Water from our wells is treated at our distribution center, then blended with state pretreated water in our reservoirs for distribution. Water from the state project is treated at the Polonio Pass Water Treatment Plant, then pumped directly to our reservoirs for blending. For more details on the treatment process of city water, please call the City of Guadalupe Water Department Supervisor at (805) 356-3890.

Contaminants that may be present in source water include:

Microbial Contaminants, such as viruses and bacteria that may come from septic systems, sewage treatment plants, agricultural livestock operations, and wildlife.

Inorganic contaminants, such as salts and metals that can be naturally-occurring or result from storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.

Pesticides and herbicides, which may come from a variety of sources such as agricultural, urban storm water runoff, and residential use.

Organic chemical contaminants, including synthetic and volatile organic chemicals, byproducts of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, agricultural applications, and septic systems.

Radioactive contaminants, can be naturally occurring or the result of oil and gas production and mining activities.

In order to ensure that tap water is safe to drink, the United States Environmental Protection Agency (USEPA) and the State Water Resources Control Board, (SWRCB) prescribe regulations that limit the amount of certain contaminants in drinking water provided by public systems. USEPA and SWRCB regulations also establish limits for contaminants in bottled water.

Definitions

Maximum Contaminant Level (MCL): The highest level of a contaminant that is allowed in drinking water. Primary MCLs are set as close to public health goals as economically and technologically feasible. Secondary MCLs are set to protect the odor, taste, and appearance of drinking water.

Maximum Contaminant Level Goal (MCLG): The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs are set by the USEPA.

Public Health Goal (PHG): The level of a contaminant in drinking water below which there is no known or expected risk to health. PHGs are set by the California Environmental Protection Agency.

Maximum Residual Disinfectant Level (MRDL): The highest level of a disinfectant allowed in drinking water. The addition of a disinfectant is necessary for control of microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG): The level of a drinking water disinfectant below which there is no known or expected risk to health.

Primary Drinking Water Standards (PDWS): MCLs or MRDLs for contaminants that affect health along with their monitoring, reporting, and water treatment requirements.

Secondary Drinking Water Standards (SDWS): MCLs for contaminants that affect taste, odor, and appearance of drinking water.

Treatment Technique (TT): A required process intended to reduce the level of a contaminant in drinking water.

Regulatory Action Level (AL): The concentration of a contaminant that a water system must not exceed.

Additional Information on Drinking Water

Drinking water, both tap water and bottled water, may reasonably contain small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a risk to health. More information about contaminants and potential health effects can be obtained by calling the USEPA's Safe Drinking Water Hotline at the number below. Some people may be more vulnerable to contaminants in drinking water than the general population. Immune-compromised persons such as cancer patients undergoing chemotherapy, persons who have undergone organ transplants, who have HIV/AIDS or other immune system disorders, some elderly and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. USEPA and Centers for Disease Control guidelines on appropriate means to lessen the risk of infection by Cryptosporidium and other microbial contaminants are available from the Safe Drinking Water Hotline at 800-426-4791 or at www.epa.gov/safewater/resource, and/or https://www.cdph.ca.gov/Programs/CEH/DFDCS/Pages/FDBP rograms/FoodSafetvProgram/Water.aspx

City of Guadalupe-Chemicals Used for Disinfection

City of Guadalupe uses both chlorine and chloramines as primary forms of disinfection. Chlorine and Chloramines are both state and federally approved forms of disinfection. Chloramines are used by many water utilities nationwide due to its alternative benefits. Unlike chlorine, chloramines minimize disinfection byproduct formation, and improves taste in drinking water. Chloramines have the same effect as chlorine for typical water use, and both very safe to use in drinking water, except chloramines must not be used for kidney dialysis patients, fish tanks, or aquariums. Treatments to remove chloramines from water are different than treatments for removing chlorine. Please contact your physician or dialysis specialist for questions pertaining to kidney dialysis water treatment. Contact your pet store or your aquatic life-aquarium professional for questions regarding water used for fish and other aquatic life. Some people who use water containing chlorine/chloramines well in excess of the MRDL could experience irritating effects to their eyes and nose. Some people who drink water containing chlorine well in excess of the MRDL could experience stomach discomfort. You may also call 800-111-2222 for additional chlorine/chloramine information.

City of Guadalupe Water Assessment

A source water assessment of the drinking water sources for the City of Guadalupe completed in 2014 found that the sources are most vulnerable to the following activities associated with potential contaminants in the water supply –Automobile-Gas Stations, Metal

plating/finishing/fabricating. There have been no contaminants detected in the water supplies, however, the sources are still considered vulnerable to activities located near the drinking water sources. For more information found in the assessment please contact Jaime Vidales at (805) 356-3890 or email jvidales@ci.guadalupe.ca.us.

Primary Drinking Water Standards Detection Summary

Nitrate/Nitrite: Nitrate/nitrite in drinking water at levels above 10 mg/L is a health risk for infants of less than six months of age. Such Nitrate levels in drinking water can interfere with the capacity of an infant's blood to carry oxygen, resulting in serious illness. Symptoms include shortness of breath and blueness of the skin. Nitrate levels above 10 mg/L may also affect the ability of blood to carry oxygen in other individuals, such as pregnant women and those with certain specific enzyme deficiencies. If you are caring for an infant or you are pregnant, you should ask advice from your health care provider.

Uranium: Some people who drink water containing uranium in excess of the MCL over many years may have kidney problems or an increased risk of getting cancer. **Gross Alpha**: Certain minerals are radioactive and may emit a form of radiation known as alpha radiation. Some people who drink water containing alpha emitters in excess of the MCL over many years may have an increased risk of getting cancer. **Fluoride**: Some people who drink water containing fluoride in excess of the federal MCL of 4 mg/L over many years may get bone disease, including pain and tenderness of the bones. Children who drink water containing fluoride in excess of the state MCL of 2 mg/L may get mottled teeth.

Hexavalent Chromium (6): Some people who drink water containing hexavalent chromium in excess of the MCL over many years may have an increased risk of getting cancer. There is currently no MCL for hexavalent chromium. The previous MCL of 0.010 mg/L (10 ppb) was withdrawn on September 11, 2017. However, any hexavalent chromium results above the detection limit of 1 ppb is reported. Toluene: Some people who use water containing toluene in excess of the MCL over many years may experience nervous system, kidney, or liver problems.

Trihalomethanes (THMs) and Haloacetic Acids (HAA5s): Some people who drink water containing THMs and HAA5s in excess of the MCL over many years may experience liver, kidney or central nervous problems and may have an increased risk of cancer. For more information on disinfection byproducts please call the Safe Drinking Water Hotline at 800-426-4791 or visit http://water.epa.gov/drink/contaminants/basicinformation/

disinfectionbyproducts.com

Nickel: Some people who drink water containing nickel in excess of MCL over many years may experience liver and heart effects.

About water blending: City of Guadalupe combines well water with state surface water to offset any contaminants that may be present in either source, and to ensure that the water delivered to your home meets all State and Federal drinking water standards.

For questions: Please call Jaime Vidales at the City of Guadalupe Water Department, (805) 356-3890. Email: <u>jvidales@ci.guadalupe.ca.us</u> Public Participation Opportunities: The Guadalupe City Council meets every 2nd and 4th Tuesday of each month at 6pm at the Council Chambers located at 918 Obispo St. Guadalupe, CA.

